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Abstract

Episodes of low natural interest rates, even transitory, pose a challenge to monetary policy, by possibly

causing the effective lower bound (ELB) on the policy rate to bind. Those episodes are more likely to

occur not only when the natural rate is low on average but also when fluctuations around its average

level are large. We study the responsiveness of the natural interest rate to structural aggregate shocks

affecting the aggregate supply of and demand for savings. Using a quantitative overlapping-generations

model, we trace back this responsiveness to the slopes of aggregate savings supply and demand curves

and argue that both curves have likely flattened over the past four decades in the US This implies a

greater sensitivity of the natural interest rate to structural shocks affecting the supply of and demand

for aggregate savings – making it more likely, all else equal, that it fall into negative territory.
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1 Introduction

In this paper, we study the responsiveness of the “natural interest rate” – the equilibrium real interest rate

that would prevail in a hypothetical flexible-price economy – to structural aggregate shocks affecting the

aggregate supply of and demand for savings. Our motivation for doing so is the widespread concern that,

in a low-interest-rate environment, central banks may not be able to effectively track this natural interest

rate because of a binding effective lower bound (ELB) on the policy rate – thereby de facto forcing the

central bank into an inefficiently contractionary monetary policy when the natural interest rate plunges.

While much of the recent literature (reviewed below) has focused on the downward trend in riskless interest

rates worldwide and the risk it poses to monetary policy implementation, we stress that an equal concern

should be the volatility of the natural interest rates around trend, as the latter also – and on an equal

footing with the trend – determines how frequently and deeply the natural rate is likely to fall below the

ELB.

There are two broad reasons why the volatility of the natural interest rate may evolve over time. First,

the frequency, amplitude (or even type) of aggregate shocks hitting the economy may change. Second,

the propagation of those shocks to the demand for and supply of aggregate savings, and ultimately to the

equilibrium interest rate, may change. In this paper, we entirely focus on the second question and ask: What

are the structural factors ultimately determining the response of the natural rate to a given set of aggregate

shocks, and how have these factors likely evolved over the past few decades? Accordingly, we consider

generic structural shocks of normalised size shifting the supply of aggregate savings (namely, discount-

factor shocks) or the demand for such savings (aggregate productivity shocks). In richer environments,

other shifters of aggregate savings demand and supply could be considered, but those two are the natural

place to start.1

We theoretically identify, and tentatively quantify, three factors having likely increased the responsive-

ness of the natural interest rate to underlying structural shocks affecting the supply of and demand for

aggregate savings in the US economy over the past forty years: (i) increased out-of-pocket (OOP) health

spending in old age (as a fraction of social-security income); (ii) decreased good market competition; and

(iii) increased public debt. Increased health spending in old age magnifies the intertemporal income effects

associated with changes in the expected return on assets, making households less willing to buffer these

changes by adjusting savings. Formally, the aggregate savings supply curve, which expresses aggregate

household savings as a function of the expected return on assets, flattens (and can, in principle, even

revert). Intuitively, households facing a fall in their expected return on assets will dissave less to secure

future consumption when more of their future non-asset income is already committed to health expenses.

Because household savings respond less to changes in interest rates, the response of the equilibrium interest

rate to aggregate shocks that shift the savings supply or demand curves is magnified.

While old-age health spending affects the shape of the savings supply curve, the last two factors (goods

market competition and public debt) affect the shape of the savings demand curve – i.e. the responsiveness

of borrowers as a whole (firms and the government) to changes in the interest rate that they are facing.

First, all else equal, lesser goods market competition reduces the responsiveness of firms’ demand for capital

1Of course, since the mid-2000s, the world economy has been hit by shocks that were larger than during the Great
Moderation – from the Great Financial Crisis to COVID-19 to the Russian invasion of Ukraine. However, while the nature
and size of these shocks are relatively well understood, the determinants of their propagation to interest rates are less.
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to its cost – formally, it reduces the elasticity of the capital stock to the real interest rate, i.e., the capital

demand curve flattens. Second, to the extent that government liabilities are less sensitive to the real

interest rate than firms’, a relative increase in the contribution of public debt to the overall stock of assets

available to households tends to reduce the sensitivity of the total demand for savings to change in the

interest rate. That is, both the sensitivity of firms’ capital to the interest rate and the contribution of this

capital to the overall stock of assets matter for the slope of the savings demand curve and, ultimately, for

the responsiveness of the equilibrium interest rate to shifts in the savings demand and supply curves. Both

factors, we argue, have pushed towards a flattening of the aggregate savings demand curve over the past

forty years in the US. This also implies a greater response of the equilibrium interest rates to exogenous

shifters of the aggregate savings supply or demand curves.

We clarify and measure those three forces in two steps. First, we lay out (in Section 2) a simple,

tractable overlapping-generations (OLG) model with two period-lived households wherein the three in-

gredients outlined above (old-age health spending, imperfect competition, and public debt) are operative.

Household consumption choices over their life cycle determine the supply of aggregate savings. More specif-

ically, households receive labour earnings when active and social security in old age, complemented by the

payoff on their asset portfolio. Total income in old age is partly spent inelastically on health expenses, with

what is left being spent on non-durable consumption. Life-cycle saving behaviour generates intertemporal

income effects in response to changes in expected asset returns, which become more potent as the share of

social security income devoted to health spending increases. On the other side of the market for aggregate

savings stand firms and their demand for capital, which equates the marginal product of capital with its

cost, as well as the government rolling over a given stock of public debt. We derive approximate analytical

expressions for the aggregate savings supply and demand curves in the vicinity of the steady state and use

those expressions to uncover the underlying determinants of the slopes of these curves. Finally, we use

those slopes to provide analytical formulae for the elasticities of the equilibrium interest rates to discount-

factor shocks (which shift the aggregate supply of savings) and total-factor productivity shocks (which

shift the aggregate demand for savings while holding supply fixed on impact). In doing so, we arrive at a

tight analytical characterisation of how changes in the deep parameters of the model, ultimately reflecting

changes in the key structural features of the economy, affect those elasticities. In particular, we show how

greater health spending (as a function of social security income), lower competition, and greater public

debt all tend towards raising the elasticities of the equilibrium interest rate with respect to both aggregate

shocks under consideration.

Guided by the intuitions provided by our analytical model, we next construct (in Section 3) a fully-

fledged quantitative OLG model with multiple life periods and a realistic life-cycle pattern of individual

labour earnings. While the multiple-period OLG model nests the two-period model as a special case, the

former aggregates the heterogeneous saving behaviour of many cohorts. We calibrate the model to two

time periods: the early 1980s (“1980” for short) and the recent years (“2020”). We compute numerical

aggregate savings supply and demand curves – the quantitative analogues of the analytical curves derived

within the two-period model – and confirm that both have been flattening: the savings supply curve is

increasing in the interest rate and has a lower slope in 2020 than in 1980, while the savings demand curve

is decreasing in the interest rate and has a higher slope in 2020 than in 1980 (this is shown in Figure 3).

This again implies that aggregate shocks shifting those curves have a greater impact on the equilibrium
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interest rate, which we confirm by computing impulse-response functions for this rate after discount factor

and productivity shocks. Under our baseline calibration, the dive of the equilibrium interest rate after

a positive discount-factor shock (i.e., a positive shock to the aggregate supply of savings) or a negative

productivity shock (i.e., a negative shock to the aggregate demand for savings) is about 40% larger in

2020 than in 1980 (holding the size and persistence of the underlying shocks the same) – see Figure 4 for

a summary of this pattern. The response of the interest rate to discount-factor shocks is also much more

persistent in 2020 than in 1980. We finally run a series of counterfactual experiments in order to decompose

the role of the different factors outlined above in magnifying the interest-rate response to aggregate shocks.

Namely, we compare our baseline impulse-response functions for “2020” to alternative functions whereby

health cost, markups, and public debt are (one by one) set to their value in “1980”. Ultimately, we find a

moderate role for the rise in old-age health spending in explaining the magnification, and a more substantial

role for the other two factors.

Lastly, we extend our baseline model (in Section 4) to incorporate a number of features that may also

have played a role in evolution of the key elasticities that we are interested in. In particular, we consider

changes across the two time periods under consideration in household longevity, retirement age, population

growth, retirement replacement ratio, and private debt. These factors, it turns out, do not significantly

alter the main lessons that we draw from our baseline analysis (if anything, they add to the amplification

of the interest-rate response relative to our baseline model without those model features.)

1.1 Literature review

Our analysis complements the recent strand of the literature that examines the trends in the levels of

interest rates – but typically disregards the evolution of their volatility around the trend. That literature

has solidly established that empirically, actual riskless real interest rates have been trending downwards

worldwide, at least over the past four decades (Del Negro et al., 2019; Obstfeld, 2023) and perhaps even

for centuries (Rogoff, Rossi and Schmelzing, 2022). Interestingly, this downward trend in riskless rates has

not been accompanied by a similar trend in the return to capital, at least in the US – if anything, the latter

has increased over the past forty years, creating an upward trend in the rate-of-return spread between safe

and risky assets (Farhi and Gourio, 2018; Marx, Mojon and Velde, 2021).2 On the side of quantitative

theory, models of “secular stagnation” have attempted to rationalize these facts by tracing them back to

the underlying evolution of the structural features of the economy, such as the decline in productivity

and population growth, the rise in firms’ market power, and an increased preference for safety (Rachel

and Summers, 2019; Eggertsson, Mehrotra and Robbins, 2019; Platzer and Peruffo, 2022; Bailey et al.,

2022). In particular, Farhi and Gourio (2018) and Marx, Mojon and Velde (2021) insist on the importance

of changes in household attitudes towards risk in explaining the currently low value of the riskless rate

relative to the return to capital. Relative to those studies, our paper focuses on the responsiveness of the

interest rate to aggregate shocks – as opposed to trends in interest rates. We share with some models of

secular stagnation the emphasis on firm markups – and, more precisely, the role of their evolution over

time. We share with other models of secular stagnation – e.g., Del Negro et al. (2017) – a foundation

for the return spread between Treasuries and capital claims based on a convenience yield on Treasury

debt – see also Krishnamurthy and Vissing-Jorgensen (2012), Fisher (2015), Anzoategui et al. (2019) and

2Those studies use the updated return-to-capital series of Gomme, Ravikumar and Rupert (2011).
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more recently Chiang and Zoch (2022) for a similar approach. This allows us to match the evidence of a

relatively stable return to capital in the long run coupled with a dwindling return on government bonds.

Finally, while we do not explicitly model a binding ELB (since we focus on the flexible-price equilibrium

and the interest-rate fluctuations it implies), our model indirectly relates to the analysis of monetary-fiscal

interactions in the vicinity of the ELB. For example, Campos et al. (2024) argue that in non-Ricardian

economies with a demand for public debt (for consumption smoothing, in their framework), raising the

public debt increases the natural interest rate and thereby creates more monetary policy space for the

central bank. Our analysis qualifies this mechanism since, as we argue, greater public debt also increases

the amplitude of natural interest-rate fluctuations – holding the size of the underlying aggregate shock

unchanged –, in addition to raising its average level.

2 A simple model of intertemporal income effects and imperfect com-

petition

In this section, we lay out a simple variant of the OLG model of Diamond (1965) and Barro (1974), wherein

the three effects discussed above can be decomposed analytically; the quantitative model of Section 3 will

be a direct generalization of this simple model. In every period, a mass 1 of households is born. Every

household supplies inelastically one unit of labour to firms when “young”, and lives of asset payoffs and

social security when “old”. Households save in the form of capital and government debt, which are imperfect

substitutes because the latter incorporates a convenience yield à la Krishnamurthy and Vissing-Jorgensen

(2012). We first present firms’ behaviour as well as fiscal policy before turning to the households.

2.1 Firms

There is monopolistic competition in the goods market and two production layers: competitive final goods

firms produce the final good out of a continuum of intermediate goods, each of which is supplied by a single

firm. The production function for final goods is

Yt =

(∫ 1

0
(Yt(f))

θ−1
θ df

) θ
θ−1

(1)

where Yt(f) denotes the quantity of intermediate good f ∈ [0, 1] used in production and θ > 1 the cross-

partial elasticity of substitution between intermediate goods. Calling p(f) the price of intermediate good f

in terms of the final good, the optimal demands for inputs by the final good sector are Yt(f) = (pt(f))
−θ Yt,

where the p(f) satisfy
∫ 1
0 (pt(f))

1−θ = 1. In symmetric equilibrium, all intermediate goods firms produce

and sell to final goods firms the same quantities and at the same price so that pt(f) = 1 and Yt(f) = Yt

for all (f, t).

Intermediate good firm f produces by means of the production function:

Yt(f) =
[
αKt(f)

ρ−1
ρ + (1− α)(AtLt(f))

ρ−1
ρ

] ρ
ρ−1

(2)

where Kt(f) is capital, Lt(f) is labor, ρ > 0 is the elasticity of substitution between the two, A(t) is labour-

augmenting productivity, and α ∈ (0, 1) a production parameter. We assume in this section that capital
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fully depreciates within the period (this will be relaxed in Section 3). Labour-augmenting productivity

A(t) is subject to permanent shifts, which we assume here to be one-off and unexpected (i.e., they are

“MIT” shocks). That is, At = At−1EAt, where EAt has mean 1, and the perfect-foresight dynamics prevail

after the occurrence of the shock.

In what follows, we characterise the production side of the economy in terms of detrended, “intensive-

form” variables, i.e. we define kt(f) = Kt/(Lt(f)At−1) and yt(f) = Y (t)/(Lt(f)At−1). Exploiting the

symmetry of intermediate goods firm behaviour, we drop f argument and accordingly write the intensive-

form aggregate production function as:

yt =

[
αk

ρ−1
ρ

t + (1− α)E
ρ−1
ρ

At

] ρ
ρ−1

(3)

Given the demand curves faced by intermediate goods firms, they charge final goods firms the markup

µ = θ/(θ − 1) over real marginal cost. Factor prices are thus distorted and lie strictly below the corre-

sponding marginal product; namely, the gross interest rate Rt and the wage wt are given by:

Rt =
α

µ

[
α+ (1− α)

(
kt
EAt

) 1−ρ
ρ

] 1
ρ−1

and wt =
1− α

µ
At

[
α

(
kt
EAt

) ρ−1
ρ

+ 1− α

] 1
ρ−1

(4)

As a consequence, imperfect competition also distorts factor shares. Calling κL = wtLt/Yt = wt/(Atyt)

and κK = KtRt/Yt = Rtkt/yt the labour and capital shares along a balanced growth path without aggregate

shocks, we have κL + κK = 1/µ < 1. Equivalently, there is a positive pure profit share (µ − 1)/µ to be

distributed to the households along with labour and capital incomes.

2.2 Government

In every period t, the government issues debt, collects taxes from working households and pays out social

security payments to retirees. Labour earnings are taxed at the proportional rate τt, resulting in a total

tax collection of τtwt (since the mass of newborn is constant and equal to 1). Every retiree of time t gets

a social security payment ξt, which we assume to increase along with aggregate productivity to ensure

balanced growth: ξt = ξ̄At−1, where ξ̄ ultimately determines the income replacement ratio for retirees.3

The government budget constraint at time t is thus given by Bt = RtBt−1+ ξ̄At−1− τtwt. We assume that

the government lets τt adjust so that detrended public debt remains at an exogenous steady-state value

B̄ = Bt/At. The tax rate implied by this fiscal policy is:

τt =
At
wt

(
B̄Rt + ξ̄

EAt
− B̄

)
(5)

3In balanced growth, the replacement ratio is ξt
wt

=
ξ̄At−1/At

wt/At
= ξ̄

(1+g)(w/A)
. Given w/A (determined by firms’ behaviour),

ξ̄ determines ξt/wt.

6



2.3 Households

2.3.1 Households’ problem

Households are two-period lived and inelastically provide one unit of labour to intermediate-good producers.

They have intertemporal utility

U(cy,t, bt, co,t+1;βt) = u(cy,t + ψbt) + βtu(co,t+1), (6)

where cy,t denotes consumption when young, bt the holdings of government debt when young, c0,t+1 (non-

health) consumption when old, βt ≥ 0 is the subjective discount factor, and u(·) is CRRA with risk aversion

coefficient σ > 0. The utility specification in (6) implies that holding government debt yields utility and,

hence, a return discount (or “convenience yield”) relative to capital claims in equilibrium. This assumption

follows much of the literature on the demand for treasury debt, e.g., Krishnamurthy and Vissing-Jorgensen

(2012); Fisher (2015); Anzoategui et al. (2019); Chiang and Zoch (2022). The parameter ψ ≥ 0 controls

the relative desirability of government bonds and therefore the equilibrium spread between the two returns.

βt is stationary with mean β and subject, like productivity shocks, to one-off, unexpected (by possibly

persistent) shifts. After a βt-shock has occurred, the perfect-foresight dynamics prevail.

Following Eggertsson, Mehrotra and Robbins (2019), we assume that working households are rebated

firms’ pure profits, which they get along with labour earnings whilst working.4 Since the pure profit share

is θ−1, every households gets a transfer Yt/θ and thus the budget constraints of young households is:

cy,t + bt + kst+1︸ ︷︷ ︸
ast+1

= (1− τt)wt + Yt/θ, (7)

where kst+1 denotes a young household’s holdings of capital claims. The household’s financial wealth at

the end of time t is thus ast+1 = bt + kst+1, but the two wealth components do not yield the same returns

since government debt yields utility; accordingly, call Rkt+1 the return on capital claims and Rbt+1 that on

government bonds.

The retirees of date t get a social security payment ξt > 0 and the portfolio payoff bt−1R
b
t + kstR

k
t .

Some of this income is spent inelastically on health spending h̃0,t, and the rest is spent on non-health

consumption c0,t.
5 Consequently, the budget constraint of date-t+ 1 retirees is given by:

co,t+1 + h̃o,t+1 = btR
b
t+1 + kst+1R

k
t+1 + ξt+1

Health spending grows with output in a way that ensures balanced growth, i.e. h̃0,t = h0At−1, where

the parameter h0 ∈ [0, ξ̄) ultimately determines the extent of households’ health spending. Using the

4Eggertsson, Mehrotra and Robbins (2019) assume that rents are distributed to working households proportionally to
labour income, and we shall make the same assumption in Section 3. This is immaterial in the present section since all
households receiving rents are symmetric.

5Our modelling of health spending as entirely inelastic is consistent with the notion that most old-age OOP expenditures
are non-discretionary (McInerney et al., 2022). For example, Medicare Part B contributions (which we are going to use to
calibrate the model in Section 3) are regulated and hence not chosen by households. Note also that because health consumption
is not a decision, it need not feature in the utility functional (though it could.)
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expression for ξt, we can write retirees’ old-age consumption as:

co,t+1 = btR
b
t+1 + kst+1R

k
t+1 + δAt (8)

where δ ≡ ξ̄ − ho ≥ 0 measures the (detrended) size of old-age non-asset income available for non-health

consumption.

2.3.2 Aggregate savings

Under our maintained assumption of perfect foresight after an aggregate shock has occurred, the optimal

demands for capital claims and government debt must satisfy, respectively:

u′(cy,t + ψbt) = βu′(ceo,t+1)R
k
t+1 (9)

and

(1− ψ)u′(cy,t + ψbt) = βtu
′(ceo,t+1)R

b
t+1 (10)

Combining (9) and (10), we observe that

ψ =
Rkt+1 −Rbt+1

Rkt+1

,

so that the parameter ψ directly controls the equilibrium spread between the two asset returns. Exploit-

ing the fact that Rbt+1/R
k
t+1 = 1 − ψ, we can then combine equation (7)-(8) to express the household’s

intertemporal budget constraint as follows:

cy,t +
co,t+1

Rkt+1

+ ψbt = (1− τt)wt +
Yt
θ

+
δAt

Rkt+1

(11)

The latter expression reveals how a change in the return on capital Rkt+1, holding the spread ψ constant,

shifts the budget set of the households and, ultimately, their consumption possibilities. On the one hand,

when Rkt+1 falls, the discounted cost of old-age consumption (from the perspective of a young household)

increases. On the other hand, provided that δ > 0, the present value of income also increases. Crucially,

the latter effect is scaled by δAt, i.e., retirement benefits net of health expenses. In a low-δ economy (say,

because health expenses are high), the present value of income is less responsive to change in interest rates

than in a high-δ economy, and therefore the first effect (on the cost of future consumption) is relatively

stronger.

Under our assumed fiscal policy of constant detrended steady-state debt, and given the fact that the

holders of government bonds are symmetric, market clearing for government bonds requires that bt = B̄At.

Then, using equations (7), (9) and (11), we find that (detrended) individual household savings are:

ãst+1 ≡
ast+1

At
= stΩt − (1− st)

δ

Rkt+1

+ ψB̄, (12)

where st denotes the fraction of households’ present value of income (the right-hand side of equation (11))
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devoted to savings and is given by:

st =

[
1 + β

− 1
σ

t (Rkt+1)
σ−1
σ

]−1

(13)

while Ωt is a household’s detrended first-period disposable income:

Ωt =
(1− τt)wt + Yt/θ

At
(14)

Equations (12)-(13) define a “savings supply curve” summarizing the dependence of workers’ end-of-

first-period savings ãt+1 on the expected return on capital claims in the next period, Rkt+1. In the (Rk, ã)-

plane, this curve is shifted by the underlying structural shocks, namely to preferences βt (which move st)

and to productivity EAt (which move Ωt). Equations (12)-(13) show that the return on capital Rkt+1 affects

household savings via two channels: through the saving rate st, and through the δ/Rkt+1 ratio. When δ = 0,

the competition between the intertemporal income and substitution effects on savings only work through st,

and we recover the traditional result that an increase in Rkt+1 raises ãt+1 (i.e., intertemporal substitution

effects dominate) if and only if σ < 1. When δ = 0 and in addition σ = 1, so that the intertemporal

income and substitution effects of Rkt+1 exactly offset each other, then the savings supply curve is flat –

i.e. insensitive to Rkt+1. However, even in the case where σ = 1, if δ > 0, then the curve is upward-sloping,

and all the more so that δ is large. That is, a large value of δ reinforces intertemporal substitution effects,

while a low value of δ weakens them. We argue below that δ has fallen over the past few decades, thereby

weakening intertemporal substitution and flattening the savings supply curve. In general equilibrium, this

implies a stronger equilibrium response of Rkt+1 to the underlying structural aggregate shocks.

2.4 Equilibrium

2.4.1 Aggregate dynamics

As in Diamond (1965), the aggregate dynamics of the model is derived from the bonds market-clearing

condition at time t. The total demand for bonds (by firms and the government) is Kt+1 + B̄. The total

supply of bonds from the households is at+1. Equating the two, dividing by At and rearranging using

equations (3) (5), (12) and (13), the aggregate dynamics of the model can be summarised by the following

difference equation:

(
kt+1 + (1− ψ)B̄

) [
1 + β

− 1
σ

t (Rkt+1)
σ−1
σ

]
+ δ

(
βtR

k
t+1

)− 1
σ

= B̄ +
wt
At

− (1− ψ)Rkt B̄ + ξ̄

EAt
+

[
α

(
kt
EAt

)
ρ−1
ρ + (1− α)

] ρ
ρ−1

(15)

The left-hand side of (15) features kt+1 and Rkt+1 as endogenous variables. However, Rkt+1 is a function

of (kt+1, EAt+1) (see equation (4)), while EAt+1 plays no role under our assumption of perfect foresight after

the time-t MIT shocks (i.e. EAt+1 = 1).6 Therefore, the left-hand side of (15) implicitly defines a function

F (kt+1, βt). On the other hand, the right-hand side of (15) features wt/At and Rkt , both of which are

6Put differently, in equation (15) Rk
t+1 is the ex-ante return on capital in the next period, while Rk

t is the realised, ex-post
at time t. Both are conditional on the date-t aggregate shock.
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functions of (kt, EAt) only. Therefore, the right-hand side of (15) defines a function H(kt, EAt). Eventually,
we can rewrite equation (15) more compactly as

F (kt+1, βt) = H(kt, EAt) (16)

The steady-state value of kt, if it exists, is the solution k∗ to F (k∗, β) = H(k∗, 1). If the steady state

is unique, a dynamic equilibrium exists in the vicinity of that steady state provided that the dynamics

kt+1 = F−1[H(kt, 1), β] converges towards k
∗ for an initial condition k0 sufficiently close to k∗. For plausible

calibrations like those adopted in Section 3 below – suitably adjusted for the different number of life periods

across the two models –, a unique stationary equilibrium exists, i.e. there is exactly one steady state around

which local convergence of kt towards k
∗ occurs. This is depicted in Figure 1.

Figure 1: Aggregate dynamics in the simple OLG model

2.4.2 Savings demand curve

Denote by adt = kt + B̄ the total demand for funds by the firms and the government. Log-linearising this

equation around k∗ and using firms’ capital demand (4), we obtain the following (date-t) savings demand

curve:7

âdt = −
(

k∗

B̄ + k∗

)(
ρ

µκL

)
R̂kt +

(
k∗

B̄ + k∗

)
ÊAt (17)

where hats denote proportional deviations from the steady state. The savings demand curve (depicted in

Figure 2a) is decreasing in R̂kt and shifted by ÊAt. The slope of the curve is the elasticity of aggregate bond

7The curve is derived as follows. First, from equation (4) we get:

R̂k
t = −1

ρ

(
1− α

αk
∗ ρ−1

ρ + 1− α

)
(k̂t − ÊAt) = −1

ρ

(
1− α

α+ (1− α)k
∗ 1−ρ

ρ

)
(k̂t − ÊAt),

where the term α/(α + (1 − α)k
∗ 1−ρ

ρ ) is equal to µκC , i.e. the product of the capital share and the aggregate markup. It
follows that the elasticity of the demand for capital with respect to the interest rate is −ρ/µκL. Next, the log-linearization of
ad
t = kt + B̄ gives (k∗ + B̄)âd

t = k∗k̂t. Combining those expressions yields (17)
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demand with respect to the interest rate. Holding everything else constant (including the labour share κL),

greater firm market power µ reduces the sensitivity of bond demand to the interest rate – i.e. it flattens

the savings demand curve. If the labour share also changes, then it is the product of the markup and the

labour share that matters for the slope of the savings demand curve. In Section 3 below, we argue that

this product has fallen between 1980 and 2020, pushing the slope of the savings demand curve downwards.

The second factor affecting the slope of the savings demand curve is the steady state shares of public

debt versus capital over total assets. As the share of public debt increases (and consequently k∗/(B̄ + k∗)

falls), the sensitivity of total asset demand to interest rates falls, essentially because government issuance

is less sensitive to those rates than firms’. It follows that a greater value of this ratio also contributes to

flattening the savings demand curve. To the extent that both the share of public debt in total assets and

the product of the aggregate markup to the labour share are greater in 2020 than in 1980, the savings

demand curve has flattened over the past decades, as is depicted in Figure 2a.8

Aggregate supply of savings

Aggregate demand for savings

Rt+1

at+1

(a) Savings supply and demand

Aggregate supply of savings

Aggregate demand for savings

Rt+1

at+1

(b) Impact of a βt-shock

Figure 2: Bond market equilibrium

2.4.3 Savings supply curve

We similarly derive a linearised savings supply curve, based on the nonlinear curve derived in Section ??.

For the sake of expositional clarity, we confine our attention to the log utility benchmark, i.e., the case

where σ = 1. This illustrates that nothing in the mechanisms that we highlight in this paper crucially

rely on a low elasticity intertemporal substitution (1/σ) – in fact, our purpose is precisely to stress that

high old-age health spending relative to income strengthens intertemporal income effects regardless of the

exact value of the intertemporal elasticity of substitution. Moreover, to the extent that the period length

is long in an OLG model with two-period-lived households, it does make sense to calibrate the elasticity

of intertemporal substitution to a relatively high value. In Section 3, when the period length is one year,

we adopt a realistically lower calibration for the elasticity of intertemporal substitution.

8The last determinant of the slope of the savings demand curve is the capital-labour elasticity ρ. However, and unlike
the other factors, there is no evidence that it has substantially evolved over time (see Section 3 for how we calibrate this
parameter).
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In the case where σ = 1, the log-linearisation of equation (12) gives:

âst+1 =

[
1 +

Λ

1 + β
− ψB̄

ãs

]
Ω̂t︸ ︷︷ ︸

determined at t−1

+

[
1 + Λ− ψB̄/ã

1 + β

]
β̂t︸ ︷︷ ︸

shocked at t

+

[
Λ

1 + β

]
R̂kt+1︸ ︷︷ ︸

clearing at t+1

(18)

where âst+1 ≡ (ãt − ã)/ã and Λ = δ/(ãR). Note that in the
(
Rk, ã

)
-plane, the slope of the savings supply

curve is
Λ

1 + β
=

δ

(1 + β)(k∗ + B̄)Rk

where Rk is the steady state return to capital, i.e. the marginal product of capital divided by the aggregate

markup (µ). All else equal, the savings supply curve flattens when δ falls and/or when either term in the

denominator rises. As we argue in Section 3, δ has fallen over the past decades due to the rise in medical

expenditures of old-age individuals. While µ has increased substantially over the past decades (see, e.g.,

De Loecker, Eeckhout and Unger, 2020), this has not translated into a lower return to capital, which may

even have increased slightly (Gomme, Ravikumar and Rupert, 2011; Farhi and Gourio, 2018; Marx, Mojon

and Velde, 2021). Finally, public debt has almost quadrupled, while the capital stock has not fallen.

Therefore, if anything, the denominator has increased, reinforcing rather than overturning the effect of

health spending. Through the lens of the model, this implies that the savings supply curve has flattened,

as is depicted in Figure 2a.

2.4.4 Elasticities with respect to structural shocks

The slopes and shifts of the savings supply and demand curves ultimately determine the response of the

interest rate to aggregate shocks. Note that the timing of shocks matters here, as is reflected in the fact

that equations (17) and (18) do not have the same time index. To be more specific, a preference shock

(to βt) occurring at time t affects the supply of savings at that time and hence the capital stock of time

t + 1 (equation (18)). How the inflow of savings will materialize into more capital versus a lower interest

rate depends on the slope of the savings demand curve (17), evaluated at time t+ 1 (see Figure 2a). The

fact that both curves have flattened implies, all else equal, that a given shift in the savings supply curve

produces a greater response of Rt+1 to the underlying shock. This is depicted in Figure 2b for the case of

discount-factor shocks.

To compute the elasticity of Rt+1 with respect to βt, equate â
d
t+1 in (17) with ât+1 in (18) and solve

for Rt+1. We get:

ϵβ = −∂ logRt+1

∂ log βt
=

Λ+ 1− ψB̄
ã

Λ +
(

k
k∗+B̄

)(
ρ

µκL(1−s)

) , (19)

where again Λ = δ/ãRk. To understand how this elasticity is affected by the parameters of interest, focus

first on the case where ψ = 0, i.e., there is no convenience yield on Treasury debt. In this case, equation

(19) becomes:

ϵβ =

[
1− 1

1 + Λ

(
1− ρk∗

µκL(1− s)

(
k∗

k∗ + B̄

))]−1

Because the elasticity of substitution between labour and capital ρ is small (as low as 0.3 according

to Gechert et al. 2022), the term in brackets in the denominator of (19)) is positive under any plausible
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parameterization of the model. If we further assume that this term is not too large so that ϵβ has the

standard sign – meaning positive, so that an increase in desired savings causes a fall in Rt+1 –, then we can

confirm that the elasticity ϵβ is larger (all else equal) when (i) health spending relative to social security

income is large – so that δ (and hence Λ) is small; (ii) the aggregate markup (i.e. µ) is large; and (iii) the

share of public debt in total assets is large (so that k∗/(k∗ + B̄)) is small. Those properties remain valid

provided that ψ is not too large. Importantly, they will remain valid in the quantitative model of Section

3, when we compute the impulse response to a persistent β-shock.

Let us now turn to the elasticity with respect to productivity shocks. Suppose a productivity shock

unexpectedly hits the economy at time t + 1. At that time, the aggregate supply of savings has already

been formed (based on the expected value of Rkt+1 as of time t) and is inelastic. This means that, in terms

of deviations from steady state, we must have âdt+1 = âst+1 = 0. It then follows from equation (17) that the

elasticity of the interest rate with respect to the shock is:

ϵE =
∂ logRt+1

∂ log EAt+1
=
µκL

ρ
(20)

and is thus greater when the product µκL is larger, or when the elasticity ρ is smaller. As discussed above,

while there is no evidence that ρ has changed over time, the evidence on the joint evolution of aggregate

markups and the labour share suggests that µκL has become larger over time – thereby increasing the

elasticity ϵE .

3 Quantitative model

This section presents a quantitative overlapping-generations model, which nests the two-period setup of

Section 2 as a special case. As before, the economy incorporates households of different ages, a vertically

integrated two-layer production sector, and the government. To account for the effect of income and

asset profiles, we now extend the life cycle of households to include multiple periods and age-specific

productivities.

3.1 Setup

Households. A large number of households with identical preferences populate the economy. Each

household has a finite planning horizon limited by the lifespan J . Every period, the oldest cohort of age J

exits the economy, and a new cohort enters. Thus, households of different ages coexist in the economy at

any point in time. Households become economically active and enter the economy upon reaching age 26.

Households born at time t choose their consumption path and asset portfolio to maximize expected

lifetime utility:

max
{ct}

Et

J∑
j=26

βj−26
t

1

1− σ

(
cj,t+j−26 + ψbj+1,t+j−26

)1−σ
, (21)

where cj,t and bj,t represent consumption and bond holdings, respectively, of households of age j at time t.

As before, βt denotes the time discount factor at t, while ψ represents preferences for government bonds.

Additionally, σ > 0 is the coefficient of relative risk aversion. Households choose consumption cj,t and
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asset portfolio subject to the budget constraint:

cj,t + bj+1,t + kj+1,t = (1− τt)χjwt + (1 + rbt )bj,t−1 + (1 + rkt )kj,t−1 + dj,t + δtIj≥Jr (22)

In equation (22), bj,t−1 and kj,t−1 denote bond and capital holdings of j-year old households available at

time t, (1+ rbt )bj,t−1 and (1+ rkt )kj,t−1 are corresponding gross payoffs (with rkt ≡ Rkt − 1 and rbt ≡ Rbt − 1),

dj,t is age-specific profit payment, wt is the wage rate (subject to the tax rate τt), and χj stands for

age-specific productivity. Before age Jr, households remain in the labour force and supply one unit of

labour inelastically. When households reach the retirement age Jr, they drop out of the labour force and

∀j ≥ Jr, χj = 0, which implies zero labour earnings. Similar to our baseline model, retired households

receive retirement benefits ξt and bear health costs ht, and δt = ξt − ht denotes social security payments

minus inelastic health spending. The age indicator Ij≥Jr equals unity if the condition in the subscript is

true and zero otherwise.

Firms. The production side of this economy is the same as in Section 2, except that we no longer

assume full depreciation of capital. Consequently, we rewrite the optimal demand for capital as:

rkt + δk =
α

µ

(
Yt
Kt

) 1
ρ

(23)

where δk is the depreciation rate. Aggregate pure profits Dt are output minus factor payments:

Dt = Yt − (rkt + δk)Kt − wtLt (24)

Finally, following Eggertsson, Mehrotra and Robbins (2019), we assume that profits are distributed

proportionally to labour income:

dj,t =
χj∑Jr−1
j=26 χj

Dt (25)

Government, aggregation and exogenous processes. As in the baseline two-period model, the

government provides retirement social security. The government imposes a proportional tax on labour

earnings τt and issues one-period bonds Bt to finance its expenditures. The government budget constraint

is:

Bt + τtwtLt = Ξt + (1 + rbt )Bt−1 (26)

where Ξt is the total government spending on retirement benefits, calculated as Ξt = ξt · (J − Jr + 1)

using the fact that all cohorts are of the same size (normalised to 1). Equal cohort size also implies that

aggregate labor supply Lt is

Lt = L =

Jr−1∑
j=26

χj (27)
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Furthermore, clearing of the asset market requires:

Kt+1 =
J∑

j=26

kj+1,t (28)

Bt =
J∑

j=26

bj+1,t (29)

Finally, the process for the preference and log of productivity (βt and lnAt) are:

lnAt = ρA lnAt−1 + εAt (30)

βt = (1− ρβ)β̄ + ρββt−1 + εβt (31)

where β̄ is the steady-state value of the subjective discount factor and ρA and ρβ are the persistence

coefficients for the productivity and time-preference shocks. εAt and εβt are innovations, where εAt ∼
N (0, σ2A), ε

β
t ∼ N (0, σ2β).

3.2 Calibration

To quantitatively assess the responsiveness of the equilibrium interest rate to aggregate shocks affecting the

aggregate savings demand and supply, we calibrate our model to match key moments of aggregate US data.

We consider two different sets of parameters, corresponding to the two steady states under consideration:

the US economy in “1980” and “2020”. We first discuss the parameters that are identical across steady

states and then turn to the parameters that differ across steady states: parameters mapping to markups,

factor shares, government debt, and health expenditures.

One period in the model corresponds to a year. The duration of the economically active life of house-

holds is 60 years (J = 85). Households work in their first 40 years of life (Jr = 66) and then stay in

retirement for the next 20 years. We choose the age-specific productivity components χj to match the evi-

dence on the life-cycle profile of labour earnings from PSID data. We take the cubic regression estimates of

labour income on age from Heathcote, Storesletten and Violante (2010). The retirement benefit ξ matches

the 40% replacement ratio. We set the value of the relative risk aversion σ to 4, as is standard in quantita-

tive OLG models (Auerbach and Kotlikoff, 1987; Ŕıos-Rull, 1996). Finally, following the meta-analysis of

Gechert et al. (2022), we calibrate the elasticity of substitution between capital and labour (the parameter

ρ in the production function) to 0.3.

Next, we turn to the set of parameters whose value changes across the “1980” and “2020” steady

states (see Table 1 for a summary): the elasticity of substitution between intermediate goods (θ) and

the coefficient before the capital stock (α) in the production function for final goods (equation (2)), the

depreciation rate δk, steady-state public debt (B̄) and health expenditure (h). Those are calibrated to

match the following five moments: aggregate firm markups, the labour share, the investment-output ratio,

the public debt-output ratio, and the ratio of health expenditure to the retirement benefit. First, we follow

Eggertsson, Mehrotra and Robbins (2019) in setting the elasticity of substitution θ to 5 in our most recent

steady state (2020 here, 2015 in their paper). This corresponds to a 25% markup rate over marginal costs.

Consistent with the evidence that aggregate markups have considerably increased over the past decades
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(e.g., Farhi and Gourio, 2018; De Loecker, Eeckhout and Unger, 2020), we set θ so that the aggregate

markup in 1980 is only 10%. We calibrate the production function parameter α to match the labour share,

which according to Autor et al. (2020) has dropped from 67% in 1980 to 59% in 2020. As discussed before,

Farhi and Gourio (2018) and Marx, Mojon and Velde (2021) pointed out (using the basis of the updated

series of Gomme, Ravikumar and Rupert (2011)), that, unlike the riskless rate, the return to capital has

not declined over the past 40 years (and may even have increased slightly). Accordingly, we calibrate β in

either steady state to target an annual return to capital (rk =MPK/µ− δk in the model) of 5%, roughly

in line with the average post-tax return on all capital over the period in Gomme, Ravikumar and Rupert

(2011). We choose the value of ψ that matches the real return on government bonds, given the return

on capital. For “1980” we target the real average market yield on US Treasury Securities at a 10-year

constant maturity, i.e. the nominal yield minus average inflation over 1980-1984; this gives us a target of

4.5% annually in real term, slightly below the return on capital. For “2020”, the same computation gives

us an annual real return on Treasuries of 1% (our results are almost insensitive to plausible variations

around these numbers.) We calibrate public debt to match the ratio of gross federal debt to GDP (from

the FRED database), which was 30% in 1980 and hovered around 120% after the Covid-19 crisis.9

As discussed in Section 2 in the context of the two-life-period model, the potency of intertempo-

ral income effects shapes the savings supply curve. Importantly, greater constrained health spending in

old age magnifies intertemporal income effects, dampening households’ response to changes in asset re-

turns and flattening the savings supply curve. In practice, most old-age OOP health expenditures are

non-discretionary (see, e.g., McInerney et al., 2022 for a discussion). We adopt a model-consistent (and

conservative) calibration by considering only that part of old-age health expenditures that are strictly

inelastic – because they are regulated– namely, Medicare Part B premia.10 In 1980, the annual Medicare

Part B premium was $115.2, while the average annual Social Security benefit was $3337.7, implying that

retirees were paying about 3.5% of their benefits in Medicare Part B premia on average. In 2022 the Part

B premium had risen to $2040 annually, and the average Social Security benefit was $17526.5, implying

an average share of healthcare spending of 12%.11 We calibrate the steady state values of δt in equation

(21) (i.e., social security minus constrained health spending) to match those figures. Note that considering

other potential sources of increases in OOP health expenditure would quantitatively magnify the effects

that we are stressing.12

Finally, when drawing impulse-response functions, we calibrate the persistence of the productivity

processes to ρA = 0.99 (close to the unit-root process postulated in Section 2, and also to the value

typically estimated in the data) and the persistence of the preference shock to the much lower value

ρβ = 0.90. This is consistent with the (New Keynesian) view that the latter shocks drive fluctuations in

aggregate demand and, as such, are significantly less persistent than productivity shocks.

9The ratio actually peaked at a value near 130% in 2020, but the peak was short-lived.
10Unlike Medicare Part A, participation in Medicare Part B requires the payment of a monthly premium. Whilst it is

possible to opt-out, in practice, retirees do not once they have signed in, making the premium payments non-discretionary.
11Medicare Part B premia up to 2016 are in Table 2.C1 of Social Security Administration (2016), and those for more recent

years at the Centers for Medicare & Medicaid Services (www.cms.gov). Average annual social security benefits are obtained by
dividing total social security payments (FRED series W823RC1) by the number of enrollees obtained from the Social Security
Administration (www.ssa.gov/oact/STATS/OASDIbenies.html).

12For example, Platzer and Peruffo (2022) argue that the price of discretionary OOP spending has increased over the last
decades and calibrate their model accordingly.
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Parameter Meaning Targeted Moment “1980” “2020”

θ Elasticity of substitution Average markup rate 10% 25%

α Prod. function parameter Labor share 67% 59%

B Public debt Debt-GDP ratio 30% 120%

β Subjective discount factor Return to capital 5% 5%

ψ Preference for bonds Return to bonds 4.5% 1%

δk Depreciation rate Investment-to-output ratio 15.9% 15.9%

h Health spending Medicare Part B premium
over social security benefit

3.5% 12%

Table 1: Parameters and data targets

3.3 Results

We begin by plotting the savings demand and supply curves generated by our quantitative model, i.e., the

quantitative analogues of equations (17) and (18). Because firms are homogeneous, the savings demand

curve can be computed analytically, just like Section 2. We numerically construct the savings supply curve

by aggregating the individual saving decisions of households of different ages in the range of plausible

interest rate values. The two curves and their intersection are depicted in Figure 3, for the “1980” and

“2020” economies. Just as predicted in the context of the two-life-period model of Section 2, the increase
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Figure 3: Quantitative savings demand and supply curves

in OOP health spending flattens the savings supply curve in the quantitative model (i.e., it decreases its

slope). On the other hand, the rise in firms’ market power and the share of public debt in total assets

flatten the savings demand curve (i.e., they increase its slope).

Next, we measure the dynamic impact of a given structural shock on the equilibrium interest rate,

17



comparing impulse responses across the 1980 and 2020 calibrations. To produce a meaningful comparison,

we subject the economy to aggregate shocks that are normalised to generate a trough of 100 basis points in

the equilibrium interest rate under the 1980 calibration; the size of the trough under the 2020 calibration

(for the very same shock) then tells us what amplification is brought about by the change in parameters –

this is the quantitative analogue of comparing elasticities in the context of the simple model of Section 2.

First, consider a positive shock to the subjective discount factor β that hits the economy in period

t = 0. The left panel of Figure 4 shows the interest rate adjustment following the shock. Note that the

aggregate supply of savings at time t is predetermined (it follows from savings decisions made in period

t = −1), while the demand for savings is not affected by the shock other than via the interest rate.13 It

follows that the interest rate stays still at time t = 0. However, as the shock hits at time t = 0, households

seek to shift their consumption to future periods, and end-of-period savings go up, creating downward

pressure on the interest rate that gradually builds up from time t+1 onward. Consistent with our analysis

of the slopes of the savings supply and demand curve, we observe a significantly more pronounced (and

persistent) decline in the equilibrium interest rate for the 2020 economy. In particular, the interest-rate

trough is magnified by 48bp.

Next, consider the dynamic impact of a shock to productivity (right panel of Figure 4). Again, the

shock is normalised to produce a 100bp drop under the 1980 calibration. While the aggregate supply

of savings is predetermined when the shock hits, the demand for savings collapses on impact, creating

immediate downward pressure on the equilibrium interest rate. The impact is maximum at the time of the

shock, after which the interest rate rises, overshoots, and eventually converges back to a steady state. In

the case of a productivity shock, the interest rate trough is magnified by 40bp in 2020, relative to 1980.
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Figure 4: Interest rate responses to aggregate shocks

Finally, in order to quantify the contribution of the different forces at play to the disparity in the

interest-rate responses between the 1980 and 2020 economies, we consider three counterfactual sets of

calibrated parameters, isolating, in turn, the impact of health spending, goods market competition, and

government debt. In these counterfactual calibrations, we repeat our earlier quantitative experiment of

13In the context of the two-life-period model, equation (18) makes it clear that the time t β-shock affects âs
t+1, not â

s
t .
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perturbing the economies with productivity and time-preference shocks. Then, we gauge the contribution

of each channel to the amplification of the interest-rate response by comparing the disparities with the

baseline calibration.
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Figure 5: Counterfactual interest-rate paths

The left panel in Figure 5 shows the decomposition of the interest rate response following the time-

preference shock. First, consider an economy with the same markup, labour share and government debt as

in the 2020 calibration, but with counterfactual health costs of 3.5% of retirement benefits, i.e., correspond-

ing to its value in 1980. We observe that the interest rate response to the time-preference shock in this

economy is less pronounced than under the baseline 2020 calibration. Quantitatively, health costs account

for 5-10% of the difference between the responses in 1980 and 2020. Next, we isolate the effect of goods

market competition by fixing the health cost and government debt to match the 2020 moments, but setting

the aggregate markup and the labour share to their calibrated value of 1980. The interest-rate response in

this counterfactual economy shows that goods market competition accounts for most of the quantitative

difference across our baseline scenarios of 1980 and 2020. Finally, to evaluate the role of government debt,

we examine the interest rate response in the 2020 economy with government debt set to its counterfactual

1980 value. This shows that the increase in government debt is quantitatively significant and accounts for

up to 20% of overall amplification.

Next, we run the same counterfactual experiments to decompose the interest-rate response to the pro-

ductivity shock (right panel of Figure 5). The impact response of the interest rate is more substantial in

2020, and virtually all quantitative differences can be fully attributed to decreased goods market compe-

tition. The contribution of the other forces, namely health costs and government debt, is negligible. This

is consistent with our theoretical results established in Section 2 – see the formula for the ϵE elasticity.

To summarize, the joint effect of increased old-age health spending and public debt and decreased goods

market competition significantly amplifies the response of the equilibrium interest to aggregate shocks, as

predicted by the simple model of Section 2. The amplification is predominantly driven by the evolution of

pubic debt and markups, with a more minor role for changes in old-age health spending.
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4 Robustness

Our baseline quantitative model is, in many ways, minimal and accordingly abstracts from several struc-

tural changes potentially affecting the responsiveness of the natural interest rate to aggregate shocks. In

this section, we incorporate two sets of structural changes that have occurred between “1980” and “2020”,

namely (i) changes in population structure (population growth, life expectancy, retirement age, and retire-

ment replacement ratio) and (ii) changes in private debt and inequality.

4.1 Population structure and consumer debt

First, we alter population ageing relative to the baseline model as follows. Just as before, households enter

the economy at the age of 26 and are certain to pass away by the age of 85. However, we now introduce

the possibility that agents can die earlier, facing an idiosyncratic risk of early death. The probability of

surviving until age j+1, conditional on being alive in age j, is denoted by subscript sj . The unconditional

probability of surviving until age j + 1 is denoted by superscript sj . Since nobody survives after age J ,

the corresponding survival probabilities beyond J + 1 are sJ = 0 and sJ = 0. We also allow for a change

in the retirement age, from the age of 65 in 1980 to the age of 67 in 2020.

Households now incorporate the possibility (and associated probability) of an early death into their

optimization problem. The expected lifetime utility of a household is now:

max
{ct}

Et

J∑
j=26

sjβj−26
t

1

1− σ

(
cj,t+j−26 + ψbj+1,t+j−26

)1−σ
(32)

Given that the population consists of a large number of households, there is no uncertainty regarding the

size of cohorts at any time t. Following Ŕıos-Rull (1996), agents self-insure against idiosyncratic mortality

risk via fair one-period annuity contracts. Consequently, the budget constraint of a household is now given

by:

cj,t + bj+1,t + kj+1,t = (1− τt)χjwt + (1 + rbt )
1

sj
bj,t−1 + (1 + rkt )

1

sj
kj,t−1 + dj,t + δtIj≥Jr (33)

Second, we assume that the economy features a constant exogenous rate of population growth, denoted

by gn. Having normalised the size of the youngest cohort to unity, we rewrite the aggregate labour supply

and the asset market equilibrium as

Lt = L =

Jr−1∑
j=26

sj

(1 + gn)j−26
χj Kt+1 =

J∑
j=26

sj

(1 + gn)j−26
kj+1,t Bt =

J∑
j=26

sj

(1 + gn)j−26
bj+1,t (34)

Finally, to match realistic values of consumer debt, we assume that young households (those before 35)

have a lower time discounting factor βy < β, such that (1+ rt)β
y < 1. Additionally, young households face

an (ad-hoc) borrowing limit db:

aj+1,t ≥ db (35)

In this setting, during the most productive years of the life cycle, households save not only for retirement

but also to repay debts accumulated during the earlier stages of their life, as in Eggertsson, Mehrotra and

Robbins (2019), and Jimeno (2019).
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4.2 Parametrization

As before, we examine two distinct parameter sets associated with the two steady states: the US economy

in 1980 and 2020. Now, in addition to the seven data targets reported in Table 1, we calibrate the model

with five more targets: the growth rate of the population, the survival probabilities at different ages, the

consumer debt to output ratio, the retirement age, and the retirement replacement ratio (see Table 2 for

details.)

Parameter Meaning Targeted Moment 1980 2020

θ Elasticity of substitution Average markup rate 10% 25%

α Production function parameter Labor share 67% 59%

B Public debt Debt-GDP ratio 30% 120%

β Subjective discount factor Return to capital 5% 5%

ψ Preference for bonds Return to bonds 4.5% 1%

δk Depreciation rate Investment-to-output ratio 15.9% 15.9%

h Health spending Medicare Part B premium
over social security benefit

3.5% 12%

db Borrowing constraint Consumer-debt-GDP ratio 4.2% 6.3%

ξ Unemployment benefit Replacement rate 50% 40%

Jr Retirement age Full retirement age 65 67

gn Population growth Annual population growth 0.960% 0.455%

sj Survival probabilities Actual survival probabilities

Table 2: Additional parameters and data targets

The population growth rates we target are in line with the estimates of the US Census Bureau, which

were 0.96% in 1980 and 0.455% in 2019 (the last pre-pandemic year). Our survival probabilities sj are

the actual survival rates in 1980 and 2019, sourced from the Human Mortality Database. We set the

unconditional probability of surviving until age 26 to unity (s26 = 1) and set all the remaining survival

probabilities according to the mortality tables.

We calibrate the ad hoc borrowing limit db to match the consumer debt to output ratio. Following

Eggertsson, Mehrotra and Robbins (2019), we consider an increase in consumer debt from 4.2% in 1980 to

6.3% in 2020.

Finally, we allow for changes in two parameters related to retirement: the pension replacement ratio

and the retirement age. According to the US Social Security Administration, the retirement social security

benefit in 2020 replaced about 40% of the labour income; the size of the pension ξ matches this value in

the model calibrated for 2020. We calibrate ξ to match 50% of labour income in 1980, corresponding to

the replacement ratio of medium earners in the early 1980s (Diamond and Gruber, 1999). Regarding the

retirement age, we consider an increase in the age of full retirement from 65 in 1980 to 67 in 2020.

We summarize all twelve parameters that vary across models in Table 2. The parameters related to

relative risk aversion, age-specific productivity, and the elasticity of substitution between capital and labour

are the same as in Section 3.
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4.3 Interest-rate responses

We reexamine the interest-rate sensitivity to aggregate time-preference and productivity shocks in the 1980

and 2020 economies, allowing for the additional features just described. Hereafter, we refer to the economies

that match all corresponding targets in Table 2 as “1980” and “2020”. Additionally, we renormalize the

size of shocks to generate a trough of 100 basis points following a βt-shock and 100 basis points on-impact

interest rate drop after a negative At-shock under the 1980 calibration. Figure 6 presents the interest-rate

response following the shocks.
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Figure 6: Interest-rate paths in the extended model.

The left panel of Figure 6 illustrates that accounting for additional data moments does not qualitatively

alter the interest response to a preference shock. Comparing the responses in 2020 to those in 1980, the

economy experienced a much more pronounced decline in the equilibrium interest rate following a shock of

the same size. Quantitatively, the interest rate response is magnified by 85 basis points. Moreover, when

considering a negative productivity shock, the economy responds with a 140 basis points decline in interest

rates in 2020, contrasting with the 100 basis points drop observed when matching the 1980 moments.

This confirms that our findings in Section 3 are robust to the relaxation of our baseline assumptions

regarding population structure and borrowing constraints. Specifically, a decrease in goods market com-

petition and an increase in government debt remain the most important drivers of the sensitivity of the

natural interest rate to structural aggregate shocks. However, the increase in health spending contributes

only minimally to the overall amplification. In the case of a productivity shock (right panel of Figure 6),

the quantitative difference between the interest-rate responses is entirely attributed to the change in the

degree of goods market competition.

Finally, we quantify the specific contribution of population growth, life expectancy, consumer debt, and

social security to the disparity in the interest-rate responses between the 1980 and 2020 economies. We

find that a decrease in the retirement replacement rate accounts for about 10% of the overall amplification,

while other forces play a quantitatively small role. Additionally, we document that the aforementioned

factors do not affect the savings demand curve and are hence irrelevant for the amplification of aggregate

productivity shock.
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5 Concluding remarks

In this paper, we have attempted to clarify the fundamental forces affecting the size of the response of

the equilibrium interest rate to macroeconomic shocks affecting the demand for and supply of aggregate

savings – focusing on the factors that have likely changed between the early 1980s and the recent years,

namely (i) the increases in old-age out-of-pocket medical expenditures, (ii) firm markups, and (iii) public

debt. The model incorporates the most minimal set of frictions necessary to capture those forces, namely:

(i) imperfect competition and (ii) an overlapping-generations structure generating life-cycle savings and the

non-neutrality of public debt. Our quantitative framework suggests that changes in markups and public

debt (i.e., the demand side of the market for aggregate savings) significantly magnified the interest-rate

response to shocks, leaving a more moderate role for old-age medical spending (i.e., the supply side of this

market).
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